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Abstract

Many scientists and researchers have been considering Support
Vector Machines (SVMs) as one of the most powerful and robust al-
gorithm in machine learning. For this reason, they have been used in
many fields, such as pattern recognition, image processing, robotics,
and many others. Since their appearance in 1995, from an idea of
Vladimir Vapnik, bioinformatics community started to use this new
technique to solve the most common classification and clustering prob-
lems in the biomolecular domain.
In this document, we first give a general description of Support Vector
Machine technique, a technique based on the statistical learning the-
ory (Section 1). Then we provide a survey of the many applications
of the algorithm in the bioinformatics domain (Section 2). Finally,
we report a short list of SVM implementation codes available on the
internet (Section 3).

About this survey This document is freely available and can be
download from http://www.DavideChicco.it author’s website.
Alessandro Lazaric (INRIA, Lille, France, EU) kindly supervised and
corrected this document before publication.

http://www.DavideChicco.it
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1 Support Vector Machines: elements of sta-

tistical learning theory

”There is nothing so practical as good theory” (Kurt Lewin)

Support Vector Machines (SVM) are a set of supervised learning algo-

rithms, used in many fields for pattern recognition, classification, and clus-

tering of data. Invented by Vladimir Vapnik [1] in 1995, at Bell AT&T

laboratories, they can be considered as a special case of the Tichonov Regu-

larization method [2].

Given N ∈ N elements in input, and two disjointed classes in output, the

basic SVM takes the input elements, elaborates them (learns by them, ac-

tually), and, for each of them, predicts if it belongs to the first class or the

second one. Given a set of training examples, each marked as belonging to

one of two categories, an SVM training algorithm builds a model that assigns

new examples into one category or the other.

1.1 Binary classification problem

We consider a problem of binary classification. We have an input space

X ⊆ Rd, where d ∈ N, an output space Y = {−1,+1}, and a training set,

S, where: S = {(x1, y1), (x2, y2), ..., (xN , yN)} ∈ (X × Y ).

Our problem is to find a function (relation) that map each element of X into

Y . In the classification context, this means to find a decision rule that, given

an input element x ∈ X, tell if it belongs to −1 class or to +1 class.

We can build a linear binary classificator from a function f : X ⊆ RN → R
in this way: if f(x) ≥ 0, x belongs to −1 class; else, x belongs to +1 class.

So, in the linear case:

f(x) = (w · x) + b (1)

where w ∈ Rd. Since this function discriminates if input x elements belongs

to -1 or +1 class, it is called discriminant function.

In the geometric representation of this problem, f represents the hyperplane
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Figure 1: In the left image, the input points to classify. On the right image, point classes

are divided by many possible hyperplane. Which is the best separator?

of all the possible planes that are able to correctly classify the input data.

The modeling of this hyperplane is managed by w and b parameters. These

important w and b parameters are learned by the algorithm from the tranin-

ing set data.

This problem could be represented as the choice of the best separator hyper-

plane, in a Cartesian system, of two classes of points (−1,+1), as shown in

Fig. 1.

SVM algorithm defines the optimal separation hyperplane as the one that

maximize the area between the nearest points of the two classes. These

nearest points are so called Support Vectors and are very important because

they are the only ones that influence the solution of the problem, as shown

in Fig. 2. In addition, if the binary classification problem training set can

be replaced with only support vector points, the problem would be mathe-

matically equivalent, and computationally less expensive.

In constrained optimization, it is often possible to convert the primal prob-

lem (i.e. the original form of the optimization problem) to a Lagrangian

dual problem. The Lagrangian dual problem is obtained by forming the La-

grangian, using nonnegative Lagrange multipliers to add the constraints to
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Figure 2: The optimal separation hyperplane maximizes the distance between the sup-

port vector points

the objective function, and then solving for some primal variable values that

minimize the Lagrangian [3].

We could build the dual form of f(x) linear equation 1, as follows:

L(w, b, α) = f(x) =
N∑
i=1

αi yi (w · x) + b (2)

where αi is the parameter we will study to choose the best Lagrangian func-

tion, between the possible ones.

We define the functional margin of a point (xi, yi) with respect with a hy-

perplane (w, b), as:

γi = yi (w · xi + b) (3)

If we consider the separating hyperplane having form (w · x) + b = 0, the

signed distance of a point (xi, yi) from this hyperplane is:

di =
(w · xi) + b

||w||
(4)

Since all the couples (λw, λb), where λ ∈ R+, generate the same f function,

we use the canonical form of the hyperplane. This is obtained by scaling
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(w, b) in order to make the distance between the hyperplane and its nearest

points equal to 1
||w|| . Because of this transformation, the nearest points are

those that solve the equation:

yi(w · xi + b) = 1 (5)

Coming back to our training set S, we can say that S is linearly separable if

a parameter couple (w, b) exists, where w ∈ Rn and b ∈ R, and where:

∀i yi(w · xi + b) ≥ 1 (6)

1.2 Optimal separation hyperplane

The optimal separation hyperplane represents the best choice to divide the

input element of X into the output classes Y .

Since the the optimal separation hyperplane maximize the 2
||w|| margin, its

parameters (w, b) are the minimum possible ones that minimizes 1
2

(w · w),

between all the possible w and b that respect the condition in (6):

min
w,b

:
1

2
(w · w) (7)

subject to ∀i yi(w · xi + b) ≥ 1 (8)

To do this, we consider again the dual form of f , as described in (2). We can

rewrite it as follows:

L(w, b, α) =
1

2
(w · w)−

N∑
i=1

αi [yi (w · x+ b)− 1] (9)

If we compute the derivatives respect with b and w variables, they are:

∂L

∂b
=

N∑
i=1

yi αi = 0 (10)
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∂L

∂w
= w −

N∑
i=1

yi αi xi = 0 (11)

If we replace formulas in (10) and in (11) into Lagrangian in (9), we get a

dual form equation dependent only on moltiplicators αi.

From formula in (10) and (9), we get

w =
N∑
i=1

yi αi xi (12)

And this is very important, because if we find a proper w such that

yi(w · xi + b) = 1 & αi 6= 0 (13)

then xi a support vector.

The value of αi can be found by solving the following (dual) quadratic opti-

mization problem: find an α such that

max(wα) :
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαj yiyj xixi (14)

where αi ≥ 0 and
∑N

i=1 αiyi = 0

And, finally, by using Wolfe Dual Form and Kuhn Tucker conditions, the

hyperplane (1) can be written as:

f(x) =
N∑
i=1

αiyi (x · xi) + b (15)

1.3 Non-linear separable problems

In the previous section, we described the problem of binary classification in

the linear separable case, and we assumed that there were no error in the

training set. Now we will analyze the case of presence of error points inside

8



the two classes to be classified, as shown in Fig. 3.

Figure 3: These two classes contain some error points, that differ ξ from the optimal

hyperplane.

In the previous cases our aim was to find a separator surface that divided

all the points in the correct way; on the contrary, now we are looking for a

mathematical model that divides the most part of the points in the correct

way.

To do this, we introduce the ξ (pron.: xi) variables, called the slacks, that

represent the error distance of the wrong points from the optimal separating

hyperplane: ξ = (ξ1, ξ2, ..., ξN), where ∀i ξo ≥ 0

New constraints are so introduced in the formula in (6):

∀i yi(w · xi + b) ≥ 1− ξi (16)

In section 1.2 we defined the best hyperplane as the one that minimize
1
2

(w · w), between all the possible (w, b) couples that respect the condition in

(6). Now, with error ξ, we have to rewrite the optimal hyperplane equation

in (7). We want to find the couple (w, b) that minimize the equation:
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min
w,b

:
1

2
(w · w) + C

N∑
i=2

ξi

subject to : ∀i yi(w · xi + b) ≥ 1− ξi
∀ξi ≥ 0

C ∈ R

(17)

Parameter C allow us to control the number of badly classified points.

We also redefine the Lagrangian in (9) this way:

L(w, b, α) =
1

2
(w ·w)+C

N∑
i=2

ξi−
N∑
i=1

αi [yi (w ·x+b)−1+ξi]−
N∑
i=1

βiξi (18)

where βi, similarly to αi, are real values introduced by Lagrangian transfor-

mation.

Again, like we did for Lagrangian in linearly separable case, we compute the

derivatives respect with b, w and ξi variables. The derivatives of b and w are

same of the previous case (10)(11), while for ξi

∂L

∂ξi
= C − αi + βi = 0 (19)

If we replaced derivatives in (10), (11) and (19) into Lagrangian in (18), we

would get a dual form equation dependent only on αi and βi moltiplicators.

Then, if we consider that all the βi can be written in terms of αi terms.

By using again Wolf Dual form, we can reach the same formula in (12) and

(14), with the difference that now the condition on αi changes to 0 ≤ αi ≤ C.

While, for Kuhn Tucker conditions, b and ξi can be found as:

αi [yi(w · xi) + b− 1] = 0 (20)

(C − αi) ξi = 0 (21)
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All the cases in which αi = C are considered errors.

Despite these little variations respect with the linear case, also in this case f

could be written as the formula in (15):

f(x) =
N∑
i=1

αiyi (x · xi) + b (22)

1.4 Non-linear problems

The linear model introduced in the previous section has some limits: linear

classifiers often are not suitable for more complex systems and problems. In

fact, the points represented in figures (1) and (2) can be completely separated

by a single line. But, unfortunately, not often the problem is so easy: the

points (training set data) sometimes could also not be separate by a line (Fig.

4 ).

Figure 4: Example of two classes of points not linearly separable.

In this case, basic idea of Support Vector Machines is to map input data

into a convenient space where they can be separated with an opportune

hyperplane. For this transformation, they use a special mapping function

Φ : x → φ(x), that takes data from input space and project them to a

feature space with higher dimensionality, as shown in Fig. (5).
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The discriminant function (15) becomes:

f(x) =
N∑
i=1

wiφi(x) + b (23)

where φ : X → F is a non-linear mapping, from input space to features

space.

We can now redefine the classification problem in two steps: first, we have

to choose an appropriate non-linear mapping function, and to map data into

the new feature space; second, we have to use this new linear system to train

our data.

Figure 5: Transformation function Φ (image on courtesy of Daniele Loiacono).
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The mapping function φ associates each input element (point) to an alter-

native representation of it, from X input space having dimensionality d, to

a feature space F having dimensionality D :

x = (x1, x2, ..., xd) → φ = (φ1(x), φ2(x), ..., φD(x)) (24)

Projecting all the input points with (24) equation is equivalent to map the

X input space to F feature space: F = {φ(x) : x ∈ X}. We recall that X

input space and F feature space have different dimensions (d and D): usually

D >> d, so the mapping causes a dimensionality increase.

Coming back to the optimal hyperplane problem, considering the mapping,

we can rewrite the hyperplane function in (15) as follows:

f(x) =
N∑
i=1

αi yi (φ(x) · φ(xi)) + b (25)

At this point, it would be great to have an instrument that, given the original

input space points, calculate the (φ(x) ·φ(xi)) product directly in the feature

space, instead of computing it in the input space and then mapping the point

in the feature space.

To do this, we introduce a keypoint of Support Vector Machines: the kernel

function.

1.5 The Kernel functions

A Kernel function K is defined this way: ∀x, z ∈ X : K(x, z) = φ(x) · φ(z),

where φ is any mapping function from X to F .

We can, once again, rewrite the optimal hyperplane solution equation from

(25) in the following way:

f(x) =
N∑
i=1

αi yi K(x, xi) + b (26)
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With kernel, the equation to minimize (17) can be written again this way:

min
w,b,ξ

:
1

2
(w · w) + C

N∑
i=2

ξi

subject to : ∀i yi(w · φ(xi) + b) ≥ 1− ξi
∀ξi ≥ 0

C ∈ R

(27)

As you can understand, kernel functions are a very powerful tool to solve

classification problem, because they can be used to project (move) many

problems from a space where they cannot be solved to a proper space where

they can be solved. For this reason, the choice of the correct kernel function

to use is very important and ticklish.

Since the kernel function has somehow to stand in for the scalar product, it

must respect some properties.

For any x, y, z ∈ X and α ∈ R:

1) x · x = 0 only if x = 0

2) x · x > 0 otherwise

3) x · y = y · x
4) (αx · y) = α(x · y)

5) (z + x) · y = (z · y) + (x · y)

In addition, the kernel function has also to respect the condition given by

Mercer theorem.[4] Since kernels have to respect these conditions, there are

few functions that can be considered kernel.

The most common and famous are:

Linear K(xi, xj) = (xi · xj)
Polynomial K(xi, xj) = [(xi · xj) + 1]d where d ∈ N, d 6= 0

Gaussian K(xi, xj) = e
−||xi−xj ||2

2σ2 where σ2 is the standard deviation
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In particular, separation surface generated by Gaussian kernel can be in-

terpreted as a weighted sum of Gaussian distributions, of size σ, with center

on the Support Vector points. The choice of σ parameter vastly influences

the extent of the obtained surface.

Kernel functions can be also composed. If K1 and K2 are kernels, K is

kernel, too, if:

1) K(xi, xj) = K1(xi, xj) +K2(xi, xj)

2) K(xi, xj) = α K1(xi, xj) with α ∈ R
3) K(xi, xj) = K1(xi, xj) ·K2(xi, xj)

1.6 Algorithm steps resume

In this section we will sum up all the algorithm phases. A workflow of SVM

algorithm is shown in Fig. 6.

Training phase

• Input: training set; kernel function φ

• Main procedure: minimize the optimal hyperplane equation in (27)

subject to its constraints

• Output: prediction model (w, b, ξ parameters of the optimal hyperplane

equation)

Prediction phase

• Input: validation set, prediction model

• Main procedure: apply the prediction model to the validation set

• Output: accuracy of prediction in percentage
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Figure 6: Workflow of the classification algorithm

2 SVMs in Bioinformatics

Since SVMs demonstrated to be very powerful and strong algorithms, they

have been applied to many domains, including bioinformatics. Bioinformatics

classification problems are manifold, and so are the applications of SVMs in

bioinformatics literature.
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Between all the several papers and research available, we decide to analyze

more in details four main application of SVM in bioinformatics (Section

(2.1), Section (2.2), Section (2.3), Section (2.4)). we report other application

papers in Section 2.5.

2.1 Gene and gene function classification

The application of SVMs in gene and gene function classification were de-

scribed in many papers, such as [6][7][8]. As example, here we describe in

details the problem and the application depicted in [6]

Domain, format and technologies A DNA microarray is a collection

of microscopic DNA spots attached to a solid surface. Scientists use DNA

microarrays to measure the expression levels of large numbers of genes simul-

taneously.

Each DNA spot contains picomoles (10−12 moles) of a specific DNA sequence,

known as probes. These can be a short section of a gene or other DNA el-

ement that are used to hybridize a Complementary DNA (cDNA) or RNA

(cRNA) sample (called target) under high-stringency conditions [5].

The problem DNA microarray technology provides biologists with the abil-

ity to measure the expression levels of thousands of genes in a single experi-

ment. Initial experiments suggest that genes of similar function yield similar

expression patterns in microarray hybridization experiments.

As data from such experiments accumulates, it will be essential to have accu-

rate means for extracting biological significance and using the data to assign

functions to genes.

Each data point produced by a DNA microarray hybridization experiment

represents the ratio of expression levels of a particular gene under two differ-

ent experimental conditions. The result, from an experiment with n genes on

a single chip, is a series of n expression-level ratios. Typically, the numerator

of each ratio is the expression level of the gene in the varying condition of

interest, whereas the denominator is the expression level of the gene in some
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reference condition. The data from a series of m such experiments may be

represented as a gene expression matrix, in which each of the n rows consists

of an m-element expression vector for a single gene.

Method Authors defined the expression measurement Xi as the logarithm

of the ratio of expression level Ei for gene X in experiment i to the expression

level Ri of gene X in the reference state, normalized so that the expression

vector ~X = (X1, ..., Xn) has Euclidean length 1.

The resulting equation is:

Xi =
log(Ei/Ri)√∑n
j=1(Ej/Rj)

(28)

The expression measurement Xi is positive if the gene is induced (turned up)

respect with the reference state, and negative if it is repressed (turned down).

The inducted state and the repressed state are effects of certain treatments.

Each vector ~X in the gene expression matrix may be thought of as a point in

an m-dimensional expression space. A simple way to build a binary classifier

is to construct a hyperplane separating class members (positive examples)

from non-members (negative examples) in this space: that is why Michael P.

S. Brown and other authors chose to use SVM classifier.

Support vector machines (SVMs) use a training set to specify in advance

which data should cluster together. As applied to gene expression data, an

SVM would begin with a set of genes that have a common function: for ex-

ample, genes coding for ribosomal proteins or genes coding for components

of the proteasome. In addition, a separate set of genes that are known not to

be members of the functional class is specified. These two sets of genes are

combined to form a set of training examples in which the genes are labeled

positively if they are in the functional class and are labeled negatively if they

are known not to be in the functional class.

A set of training examples can easily be assembled from literature and
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database sources. Using this training set, an SVM would learn to discrimi-

nate between the members and non-members of a given functional class based

on expression data. Having learned the expression features of the class, the

SVM could recognize new genes as members or as nonmembers of the class

based on their expression data.

Experiments Authors analyzed expression data from 2,467 genes from the

budding yeast Saccharomyces cerevisiae organism measured in 79 different

DNA microarray hybridization experiments. From these data, they were able

to recognize five functional classes from the Munich Information Center for

Protein Sequences Yeast Genome Database (MYGD).

Using the class definitions made by the MYGD, they trained SVMs to rec-

ognize six functional classes: tricarboxylic acid (TCA) cycle, respiration,

cytoplasmic ribosomes, proteasome, histones, and helix-turn-helix proteins.

The MYGD class definitions come from biochemical and genetic studies of

gene function whereas the microarray expression data measures mRNA levels

of genes.

Performance was tested by using a three-way cross-validated experiment.

The gene expression vectors were randomly divided into three groups. Clas-

sifiers were trained by using two-thirds of the data and were tested on the

remaining third. This procedure was then repeated two more times, each

time using a different third of the genes as test genes.

Results and discussion The performance of the SVM classifiers was com-

pared with that of four standard machine learning algorithms, as shown in

Table 7. M. Brown and W. Grundy considered the following methods: SVMs

using the scaled dot product kernel raised to the first, second, and third power

(D-p 1 SVM, D-p 2 SVM, D-p 3 SVM), the radial basis function SVM (Ra-

dial SVM), Parzen windows, Fisher’s Linear Discriminant (FLD), and the

two decision tree learners, C4.5 and MOC1.

To judge overall performance, [6] paper defines the cost of using the method

M as C(M) = fp(M) + 2 · fn(M), where fp(M) is the number of false posi-
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tives for method M, and fn(M) is the number of false negatives for method

M. The false negatives are weighted more heavily than the false positives

because, for these data, the number of positive examples is small compared

with the number of negatives.

The cost for each method is compared with the cost C(N) for using the

null learning procedure, which classifies all test examples as negative. Au-

thors define the cost savings of using the learning procedure M as S(M) =

C(N)− C(M).

Each method clustered genes in the desidered classes, and, afterwards, every

classification was labeled in false positives, false negatives, true positives, and

true negatives.

As you can see in Table 7 for tricarboxylic acid (TCA) data, SVMs outper-

formed other methods, showing higher S(M) than other values.

Figure 7: Results shown in the [6] article

2.2 Cancer tissue classification

The application of SVMs in cancer tissue classification were described in

many papers, such as [9] [10] [11] [12]. As example, here we describe in de-

tails the problem and the application depicted in [10].

Domain, format and technologies Also in this case, the technology used

is microarray (described in Section (2.1)).

20



The problem Microarray expression experiments allow the recording of

expression levels of thousands of genes simultaneously. These experiments

primarily consist of either monitoring each gene multiple times under many

conditions, or alternately evaluating each gene in a single environment but in

different types of tissues, especially cancerous tissues. Those of the first type

have allowed for the identification of functionally related genes due to com-

mon expression patterns (Section (2.1)), while the latter experiments have

shown promise in classifying tissue types (diagnosis) and in the identification

of genes whose expressions are good diagnostic indicators.

In order to extract information from gene expression measurements, different

methods have been employed to analyze this data, including SVMs.

In recent years, several methods have been developed for performing gene

expression experiments. Measurements from these experiments can give ex-

pression levels for genes (or Expressed Sequence Tags, ESTs) in tissue or cell

samples.

Datasets used by authors for experiments in [10] consist of a relatively small

number of tissue samples (less than 100) each with expression measurements

for thousands of genes.

Method In these papers, a systematic and principled method is introduced,

that analyses microarray expression data from thousands of genes, tested in

multiple tissue or cell samples. The primary goal is the proper classification

of new samples. Terrence Furey and Nigel Duffy do this by training the

SVM on samples classified by experts, then testing the SVM on samples it

has not seen before. Authors demonstrate how SVMs can not only classify

new samples, but can also help in the identification of those which have been

wrongly classified by experts. SVMs are not unique among classification

methods in this regard, but authors show they are effective. Their method is

demonstrated in detail on data from experiments involving 31 ovarian can-

cer, normal ovarian and other normal tissues. This way, it was possible to

identify one tissue sample as mislabeled, and another as an outlier.
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Experiments Microarray expression experiments are performed using 97,802

DNA clones, each of which may or may not correspond to human genes, for

31 tissue samples. These samples are either cancerous ovarian tissue, normal

ovarian tissue, or normal non-ovarian tissue.

For the purpose of these experiments, the two types of normal tissue are

considered together as a single class. The expression values for each of the

genes are normalized such that the distribution over the samples had a zero

mean and unit variance.

Hold-one-out cross-validation experiments are performed. The SVM is trained

using data from all but one of the tissue samples. The sample not used in

training is then assigned a class by the SVM.

A single SVM experiment consists of a series of hold-one-out experiments,

each sample being held out and tested exactly once. Initially, experiments

are carried out using all expression scores with diagonal factor settings of 0,

2, 5 and 10.

The genes are then ranked in the manner described previously, and datasets

consisting of the top 25, 50, 100, 500 and 1000 features are created. Ex-

periments using similar diagonal factors to those above are performed using

these smaller feature sets. The best classification is done using the top 50

features with a diagonal factor of 2 or 5.

Though the smaller datasets achieve slightly better scores compared to using

all features, T. Furey and N. Duffy did not believe this improvement to be

significant.

Results and discussion After ranking the features using all 31 samples,

authors attempt to sequence the ten top-ranked genes to determine if they

are biologically significant. This analysis seems to suggest that the feature

selection method is able to identify clones that are cancer-related, and rank

them highly.

Despite additional effort is needed to develop ways of identifying meaningful

features in these types of datasets, from a tumor biologists point of view

however, the accumulation of tumor-related genes at the top is a very useful
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feature.

The [10] paper results indicate that SVMs are able to classify tissue and cell

types based on this data. The datasets currently available contain relatively

few examples and thus do not allow one method to demonstrate superiority.

Microarray expression experiments have great potential for use as part of

standard diagnosis tests performed in the medical community. Authors

shown along with others that expression data can be used in the identifi-

cation of the presence of a disease and the determination of its cell lineage.

In Figure (8) you can see a graph representing the SVM classification margins

for ovarian tissues. When classifying, the SVM calculates a margin which

is the distance of an example from the decision boundary it has learned. In

this graph, the margin for each tissue sample calculated is shown.

A positive value indicates a correct classification, and a negative value in-

dicates an incorrect classification. The most negative point corresponds to

tissue N039. The second most negative point corresponds to tissue HWBC3.

Figure 8: Results shown in the [10] article.
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2.3 Protein sequences remote homologies recognition

The application of SVMs in recognition of remote homologies between pro-

tein sequences were described in many articles like [14] [15]. In this section,

we will describe paper in [15].

Domain, format and technologies The Structural Classification of

Proteins (SCOP) domain is currently recorded into a database, called PDB90,

now having version 1.37. This database was used as the source of both train-

ing and test sequences of experiments in [15] paper. PDB90 eliminates a large

number of essentially redundant sequences from the SCOP database. The

use of the domain database allows for accurate determination of a sequences

class, eliminating the ambiguity associated with searching whole-chain pro-

tein databases.

The problem A core problem in statistical biosequence analysis is the an-

notation of new protein sequences with structural and functional features.

To a degree, this can be achieved by relating the new sequences to proteins

for which such structural properties are already known, i.e., by detection of

protein homologies.

Many statistical, sequence-based tools have been developed for detecting pro-

tein homologies (BLAST, Fasta, templates, profiles, position-specific weight

matrices, and Hidden Markov Models (HMMs)). Recent experiments have

used the Structural Classification of Proteins classification of protein struc-

tures to test many of these methods to see how well they detect remote

protein homologies that exist between protein domains that are in the same

structural superfamily, but not necessarily in the same family.

Method In this approach T. Jaakola and M. Diekhans use generative statis-

tical models built from multiple sequences, in this case HMMs, as a way of

extracting features from protein sequences. This maps all protein sequences

to points in a Euclidean feature space of fixed dimension. Authors then use
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a general discriminative statistical method to classify the points representing

protein sequences by domain superfamily.

This is quite distinct from methods that train the parameters of the HMM

itself to give a more discriminative model The statistical modeling approach

to protein sequence analysis involves constructing a generative probability

model, such as an HMM, for a protein family or superfamily.

Sequences known to be members of the protein family are used as (posi-

tive) training examples. The parameters of a statistical model representing

the family are estimated using these training examples, in conjunction with

general a priori information about properties of proteins. The model assigns

a probability to any given protein sequence. If it is a good model for the

family it is trained on, then sequences from that family, including sequences

that were not used as training examples, yield a higher probability score than

those outside the family. The probability score can thus be interpreted as a

measure of the extent to which a new protein sequence is homologous to the

protein family of interest.

Experiments T. Jaakola and M. Diekhans designed a set of experiments

to determine the ability of SVM-Fisher kernel discriminative models to rec-

ognize remote protein homologs. The SVM-Fisher kernel methods were

compared to BLAST and the generative HMMs built using the SAM-T98

methodology. The experiments measured the recognition rate for members

of superfamilies of the SCOP protein structure classification scheme.

Authors simulate the remote homology detection problem by with holding

all members of a SCOP family from the training set and training with the re-

maining members of the SCOP superfamily. Sequences are then tested from

the withheld family to see if they are recognized by the model built from the

training sequences.

Since the withheld sequences are known remote homologs, T. Jaakola and M.

Diekhans are able to demonstrate the relative effectiveness of the techniques

in classifying new sequences as remote members of a superfamily.
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In a sense, T. Jaakola and M. Diekhans are asking, Could the method dis-

cover a new family of a known superfamily?

Results and discussion The [15] paper provide a comparison of the re-

sults of the best performing approaches for each of the methods.Since the

numeric scores produced by each method are not directly comparable, au-

thors use the rate of false positives (RFP) as performance measure.

The RFP for a positive test sequence is defined as the fraction of negative test

sequences that score as high or better than the positive sequence. Consider-

ing the performances of all four methods on each of the 33 protein families T.

Jaakkola and M. Diekhans tested, as measured by the maximum and median

RFP, SVMs almost always outperformed Blast and Samt methods, as shown

in Figure (9).

In Figure (9) T. Jaakkola and M. Diekhans compare the overall performance

for the four methods on the 33 test families. For each family they computed

the maximum RFP for that family. Possible values for this RFP are shown

on the X-axis. On the Y-axis authors plot the number of SCOP families, out

of the 33 families that we tested, for which the given method achieves that

RFP performance or better.

Figure 9: Results shown in the [15] article.
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2.4 Translation initiation site recognition in DNA

The application of SVMs in translation initiation site recognition in DNA

were by Zien et al. in this paper ([18]).

Domain, format and technologies The original sequence set of Ped-

ersen and Nielsen has been assembled from high quality nuclear genomic

sequences of a selected set of vertebrates taken from GenBank. All introns

were removed, in analogy to the splicing of mRNA sequences. Only high

quality entries with at least 10 nucleotides upstream and 150 downstream of

the start codon were selected. In order to avoid over-optimistic performance

estimates resulting from biased data samples, the set was thoroughly reduced

for redundancy.

As a consequence, the results below represent lower limits to the performance

to be expected on real world data, which is heavily redundant. The data se-

lection protocol left 3,312 sequences). From the work of other investigators,

authors expect typical features of TIS to differ for different branches in the

evolutionary tree. This implies that the trained classificator will only be valid

for mammals, and that retraining on other sequence sets will be necessary

for different groups of species.

The problem Living systems are determined by the proteins that they

produce based on their genomes. But only parts of the genomic text in fact

code for proteins, and that parts are called Translation Initiation Sites (TIS).

These parts are called coding sequence (CDS).

Therefore, given a piece of DNA or mRNA sequence, it is a central problem

in computational biology to determine whether it contains CDS, and, if so,

for which protein it codes.

Since living cells are able to distinguish between CDS and other nucleotide
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sequence parts without utilizing any homology information, this should also

be possible for computer programs, in principle.

In fact, there are algorithms that identify CDS merely relying on properties

intrinsic to nucleotide sequences, like GENSCAN and ESTScan. All mod-

els discussed so far can be called generative, as they can be used to generate

potential TIS sequences with approximately the true probability distribution.

Applying such models, a sequence is considered a TIS if the probability

with which the sequence is generated by the model exceeds some threshold.

The more closely the true distribution is approximated, the better this ap-

proach works. By using so-called discriminative methods, often a superior

distinction can be achieved between true TIS and similarly looking pieces of

sequence (called pseudo sites).

By using so-called discriminative methods, often a superior distinction can

be achieved between true TIS and similarly looking pieces of sequence (called

pseudo sites). This paper shows that applying support vector machines

(SVMs) for TIS recognition can outperform other established computer ma-

chine learning methods.

Method Experiments were realized using literature-described Neural Net-

work methods, and SVM methods with some differences. Although the SVM

with the polynomial kernel already performs better than both established

methods, the results can still be improved by modifying the kernel function.

Paper authors design an improved kernel function by incorporating the ba-

sic biological hypothesis that, while certain local correlations are typical for

TIS, dependencies between distant positions are of minor importance or do

not even exist. A. Zien and G. Ratsch want the feature space to reflect this:

at each sequence position, paper authors compare the two sequences locally,

within a small window of length 2l+1 around that position. They call this

kernel locality-improved.

Experiments For each potential start codon (the nucleotide sequence ATG)

on the forward strand, one data point is generated. This leads to 13,503 data
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points, of which 3,312 (24.5%) represent true TIS and the rest (10,191 points,

75.5%) represent pseudo sites. Authors prefer this skewed distribution to a

balanced data set, as it is a (crude) approximation to the situation that is

expected for real ESTs. Each data point is represented by a sequence window

of 200 nucleotides centered around the respective ATG triplet. For triplets

near the borders of the available sequence, the positions missing from the 200

nucleotide window are filled with N, the symbol for unknown. Pedersen and

Nielsen, who used these datasets to implement a Neural Network prediction

method, divide the data into six parts of nearly equal size (circa 2200 points

each) and equal fraction of true TIS. Each part is in turn reserved for testing

the classification learned from the other five parts.

Results and discussion A. Zien and G. Ratsch have compared the perfor-

mance of important methods for sequence classification on a bio-molecular

problem of practical relevance, and show that SVMs are competitive to other,

more frequently used machine learning methods and show a simple way to

include prior knowledge to improve performance. The paper also provides

evidence that their advanced TIS recognition can be of use for other existing

programs, as shown in Figure 10, that lists the methods comparison results

(d is the degree of the polynomial).

Figure 10: Results shown in the [18] article.
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2.5 Other applications

For sake of brevity, we renounced to explain other bioinformatics applications

of SVMs. Here we report a short list of them: - Classification of genes based

on their promoter regions [13]

- Recognition of true splice sites in DNA [14] [15]

- Recognition of transmembrane receptor proteins [16]

- Prediction of the cleavage site of signal peptides from the amino-acid se-

quence of a protein [17]

- Protein fold recognition [19][20][21]

- Protein-protein interactions prediction [22]

- Protein secondary structure prediction [23]

- Protein localization [24]

- DNA hairpin molecule analysis [25]

- Signal peptide detection [26]

- Virtual screening of small molecules [27]

3 SVM code

Here’s a short list of the best SVM implementation code available online:

- svm 1.0 by William Noble Grundy, University of California, Santa Cruz,

CA, Usa. Developed in C. Used in [10]. http://compbio.soe.ucsc.edu/

svm.1.0/doc/svm.html

- SvmLight by Thorsten Joachims, technische Universitat von Dortmund,

Germany, EU. Developed in C. http://svmlight.joachims.org/

- LibSvm by Chih-Chung Chang and Chih-Jen Lin, National Taiwan Univer-

sity, Taiwan, Taipei. Developed in C++, or Java. http://www.csie.ntu.

edu.tw/~cjlin/libsvm/. [28]

Other are listed here: http://www.support-vector-machines.org/SVM_
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